Первый алгоритм обучения нейронных сетей сформулировал канадский нейропсихолог Дональд Хебб. Учёный изучал взаимодействие нейронов друг с другом, его интересовал принцип, по которому они объединяются в ансамбли. Идеи Хебба подвергались критике, однако спустя несколько лет группа американских ученых смоделировала искусственную нейросеть, которая могла отличать квадраты от других геометрических фигур.
В 2014 году произошло революционное событие: глубокие искусственные нейронные сети (Deep Artificial Neural Networks) стали распознавать объекты на картинках с точностью выше 95%, что лучше, чем это делает человек. С этого момента началось триумфальное шествие нейросетей по планете.
Такие нейронные сети достаточно большие (от нескольких десятков до нескольких сотен слоёв), и для их обучения требуются большие вычислительные ресурсы. Однако все картинки состоят из примерно одинакового набора элементарных объектов: точки, наклонные линии, контрастности и так далее. Поэтому можно не обучать каждый раз нейронную сеть с нуля, а только дообучить уже существующую.
Например, можно взять базу данных рентгеновских снимков рака лёгкого и дообучить только несколько последних слоёв уже готовой нейронной сети. Самое важное, что для такого дообучения не требуется мощных специальных вычислительных ресурсов.
Такая «упрощённая» технология снизила порог входа и позволила многим индивидуальным исследователям и некрупному бизнесу создавать то, что сейчас называется «технологиями искусственного интеллекта в медицине».
Artificial intelligence index
Если надо анализировать обыкновенные медицинские данные например, анамнез, результаты анализа или даже запах изо рта, то можно использовать несложные нейронные сети для получения массы интересной и неочевидной информации. Можно поставить диагноз с помощью нейросетей, оценить состояние здоровья человека, сделать прогнозы на ближайшее время и даже назначить лечение.
Нейросети оперируют цифрами. В них можно одновременно анализировать все параметры общего или расширенного анализа крови, слюны, волос, мокроты, пота и так далее, включая все референтные значения. Обычно каждый вид анализа делает отдельная нейронная сеть, выдающая набор диагнозов. При сравнении с наборами диагнозов от других нейронных сетей (других анализов) можно получить практически точный диагноз.
Добавим ещё одну нейросеть и по наборам диагнозов можно получить варианты лечения. Врач должен посмотреть результаты и подтвердить диагноз и лечение. Главное экономится время и уменьшается вероятность врачебной ошибки.
Подобные технологии называются Слабым (или Специализированным) искусственным интеллектом, а иногда просто машинным обучением. Медицина наиболее очевидная область для получения быстрых практических результатов от применения машинного обучения, так называемых «быстрых побед» (Quick Wins). Также в последнее время с помощью искусственного интеллекта проводятся полномасштабные исследования генетического кода, такие как британская программа «100 000 геномов»
(The 100,000 Genomes Project).
Основная цель проекта расшифровка геномов ста тысяч человек для получения информации о различных видах рака, а также о редких генетических болезнях. Такая информация поможет специалистам более эффективно бороться с раковыми опухолями и различными наследственными заболеваниями. Проект признан чрезвычайно успешным и будет расширен до пяти миллионов геномов. Конечная цель The100,000 GenomesProject создание персонифицированной медицины и фармакологии. Подобную государственную программу необходимо срочно запускать и в России!
С каждым днём примеров успешного применения искусственного интеллекта в медицине становится всё больше: нейронные сети уже умеют распознавать злокачественные опухоли, в том числе новообразования кожи, тромбы, нарушения зрения, способны диагностировать состояние внутренних органов человека на основе ультразвука, рентгеновских снимков, МРТ и т. д.
Технологии слабого искусственного интеллекта в последнее время крайне популярная тема, однако некоторые аспекты, как правило, остаются в тени. В следующем выпуске, вместе с вами, исследуем эти вопросы подробно. Следите за обновлениями!
Материал подготовил:
Виталий Мильке,
Советник президента по экономике и финансам, АО «Бизнес Альянс»,
PhD reseacher in Computer Science & Machine Learning
Фонд Росконгресс – социально ориентированный нефинансовый институт развития, крупнейший организатор общероссийских, международных, конгрессных, выставочных, деловых, общественных, молодежных, спортивных мероприятий и событий в области культуры, создан в соответствии с решением Президента Российской Федерации.
Фонд учрежден в 2007 году с целью содействия развитию экономического потенциала, продвижения национальных интересов и укрепления имиджа России. Фонд всесторонне изучает, анализирует, формирует и освещает вопросы российской и глобальной экономической повестки. Обеспечивает администрирование и содействует продвижению бизнес-проектов и привлечению инвестиций, способствует развитию социального предпринимательства и благотворительных проектов.
Мероприятия Фонда собирают участников из 209 стран и территорий, более 15 тысяч представителей СМИ ежегодно работают на площадках Росконгресса, в аналитическую и экспертную работу вовлечены более 5000 экспертов в России и за рубежом.
Фонд взаимодействует со структурами ООН и другими международными организациями. Развивает многоформатное сотрудничество со 212 внешнеэкономическими партнерами, объединениями промышленников и предпринимателей, финансовыми, торговыми и бизнес-ассоциациями в 86 странах мира, с 293 российскими общественными организациями, федеральными и региональными органами исполнительной и законодательной власти Российской Федерации.
Официальные телеграм-каналы Фонда Росконгресс: на русском языке – t.me/Roscongress, на английском языке – t.me/RoscongressDirect, на испанском языке – t.me/RoscongressEsp, на арабском языке – t.me/RosCongressArabic. Официальный сайт и Информационно-аналитическая система Фонда Росконгресс: roscongress.org.